Describe Me an Auklet: Learning to Combine Visual and Conceptual Knowledge for Generation and Interpretation of Perceptual Categories

Nikolai Ilinykh Bill Noble Department of Philosophy, Linguistics and Theory of Science Centre for Linguistic Theory and Studies in Probability (CLASP) University of Gothenburg, Sweden {name.surname}@gu.se

CLASP Seminar, May 5, 2022

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Introduction: Language Learning Grounded in Different Representations

Task: Learning to Interpret with Task-Oriented Descriptions

Background Grounded NLP Classifier-Based Perceptual Semantics Zero-shot Classification

Data: Image of Birds

Models: Alice (NLG) and Bob (NLU)

Preliminary Results and Analysis

Introduction: Language Learning Grounded in Different Representations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 ○

Task: Learning to Interpret with Task-Oriented Descriptions

Background Grounded NLP Classifier-Based Perceptual Semantics Zero-shot Classification

Data: Image of Birds

Models: Alice (NLG) and Bob (NLU)

Preliminary Results and Analysis

You have probably never seen a bird like this...

4 / 38

You have probably never seen a bird like this...

- But what do we know about what is in this image?
- Well, it *is* a bird.
- It is very likely that we do *not* know the type of the bird.
- This unknown bird would thus remind us of some other birds that "look like it".
- We can also say that this bird looks "goofy".
- How would you describe this bird to someone who has never seen one? It depends on (i) who is describing it, (ii) who are you describing it to.

< ロ > < 同 > < 回 > < 回 >

No image, only text description: what can you learn?

A Crested Auklet has black wings, pointy orange bill, a black thing on its head and looks goofy.

- Although image is not immediately available, from text alone you know which visual clues to look for once you see the bird.
- You are also very likely to *activate* knowledge of the bird domain and make your task easier by imagining how a Crested Auklet would look like.
- Grounded language learning is about grounding text in **perception and knowledge**.

Learning from Different Sources of Information

- 1. We can easily extract a lot of information about the world with our perception e.g., when seeing an unknown bird.
- 2. However, our "representational ability" heavily relies on previous knowledge, both visual and conceptual, because visual representations are not always immediately available to us and we tend to utilise other sources of knowledge.
- 3. We might ground what we comprehend into what we store and keep in mind.

Our research questions are as follows:

- To what extent can we employ both generation (NLG) and interpretation (NLU) in a more natural grounded language learning scenario?
- How can we synthesize perceptual and conceptual representational knowledge?
- What makes descriptions effective at teaching novel categories?

Introduction: Language Learning Grounded in Different Representations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 ○

Task: Learning to Interpret with Task-Oriented Descriptions

Background Grounded NLP Classifier-Based Perceptual Semantics Zero-shot Classification

Data: Image of Birds

Models: Alice (NLG) and Bob (NLU)

Preliminary Results and Analysis

Learning from Descriptions

 $\ensuremath{\textbf{Bob:}}$ Do you know what a Crested Auklet looks like? I've never seen one.

Alice: It's a goofy looking, large bird that has a bright orange break with a musky gray body and charcoal wing feathers.

Bob: Hmm. Ok, I'll keep my eye out for one...

centre for linguistic theory and studies in probabil

Introduction: Language Learning Grounded in Different Representations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 ○

Task: Learning to Interpret with Task-Oriented Descriptions

Background Grounded NLP Classifier-Based Perceptual Semantics Zero-shot Classification

Data: Image of Birds

Models: Alice (NLG) and Bob (NLU)

Preliminary Results and Analysis

Grounded NLP I

Most work in grounding and NLP is (i) multi-modal (e.g., language-and-vision) and (ii) focuses on situations where there is an immediately available one-to-one correspondence between linguistic and perceptual input.

- Referring expression generation (Krahmer and van Deemter, 2012)
- Image captioning (Bernardi et al., 2017)
- Visually grounded dialogue games (De Vries et al., 2017; Haber et al., 2019; Ilinykh et al., 2019; Dobnik and Silfversparre, 2021)

What has been missing is the opposite: when language is used to describe situations that do not correspond to a shared visual scene.

- Intuition: Part of what it is to know the meaning of a (perceptual) word is to be able to recognise instances of it in the world
- Two main approaches:
 - functional approach classifier is a function $f : PerceptualData \rightarrow [0, 1]$, corresponding to $e \rightarrow t$ in classical type theoretic semantics (Larsson, 2013).
 - distributed approach parameters of a classifier (e.g., weight matrix) are regarded as a representation of the word meaning (e.g., Schlangen et al., 2016).
- In this work, we take the distributed approach.

Zero-shot Classification

- In zero-shot classification, we split the classes according to those known at train, say Z time and those that are only shown at test time, say Z'.
- The knowledge gained by learning to differentiate between the classes in Z needs to be transferred to the task of differentiating between the classes in $Z \cup Z'$.
- Paz-Argaman et al. (2020): text-based zero-shot classification of categories of objects in images based on (i) visual similarities reflected in texts and (ii) visual features which are reflected in text.
- Hill et al. (2021): zero-shot learning of novel objects in more interactive scenarios, e.g. a robot that follows different commands and learns to interact with surrounding objects.

Introduction: Language Learning Grounded in Different Representations

(日) (四) (王) (王) (王) (王)

Task: Learning to Interpret with Task-Oriented Descriptions

Background Grounded NLP Classifier-Based Perceptual Semantics Zero-shot Classification

Data: Image of Birds

Models: Alice (NLG) and Bob (NLU)

Preliminary Results and Analysis

CUB - Caltech-UCSB Birds 200

- 11K images of 200 different bird species, downloaded from Flickr
- bounding boxes and "attribute" values annotated by AMT workers (we don't use these currently)

Data: Descriptions (Reed et al., 2016)

Descriptions

- 10 descriptions of each bird image collected from AMT
- Instructions:
 - describe only visual appearance in at least 10 words, to avoid figures of speech, to avoid naming the species even if they knew it, and not to describe the background or any actions being taken
 - the prompt included three example sentences and a diagram labeling specific parts of a bird



Data: Examples

the bird has a yellow breast and black belly as well as a small bill

this funny looking bird is black with white stripes and has a large white spot on its head

the ugly grey bird has a chicken like head but swims in the water .

this bird is squat with a medium - sized dark bill , white head and breast , light brown abdomen , dark wings , and long tail that is twice the length of the bird 's body .

イロト イポト イヨト イヨト

Splits

- train/val/test split (instance-wise)
 - $\circ 80\%/10\%10\%$
 - $\circ~$ 5-6 bird images per class in the val/test sets
- seen/un-seen split (category-wise)
 - o 180 seen, 10 unseen (by Bob) bird categories
 - $\circ~$ option for multiple folds

Introduction: Language Learning Grounded in Different Representations

(日) (四) (王) (王) (王) (王)

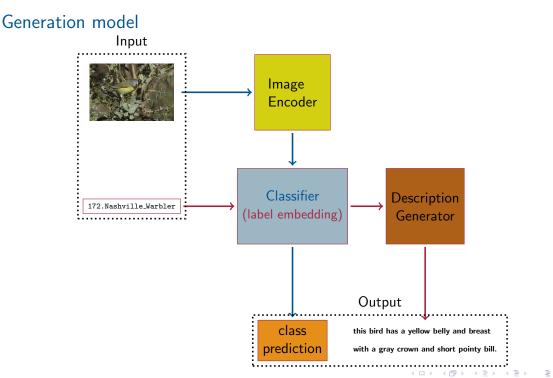
Task: Learning to Interpret with Task-Oriented Descriptions

Background Grounded NLP Classifier-Based Perceptual Semantics Zero-shot Classification

Data: Image of Birds

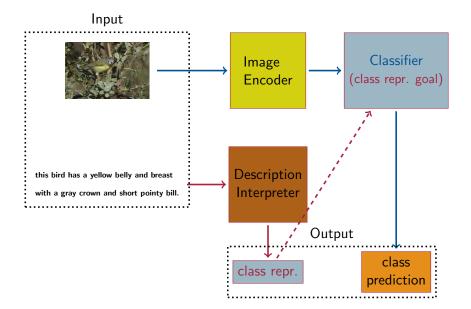
Models: Alice (NLG) and Bob (NLU)

Preliminary Results and Analysis



- Image encoder VGG16 (pre-trained on Imagenet classification); convolutional layers + first two linear layers
- Classifier Single fully-connected layer (with bias); softmax activation
- Description generator LSTM decoder

Interpretation model



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Image encoder VGG16 (pre-trained on Imagenet classification): convolutional layers + first two linear layers
- Classifier Single fully-connected layer (no bias); softmax activation
- Description Interpreter BERT [CLS] token pooler output; single linear layer with tanh activation (mean squared error loss function)

Introduction: Language Learning Grounded in Different Representations

▲□▶ ▲圖▶ ▲필▶ ▲필▶ 三里

Task: Learning to Interpret with Task-Oriented Descriptions

Background Grounded NLP Classifier-Based Perceptual Semantics Zero-shot Classification

Data: Image of Birds

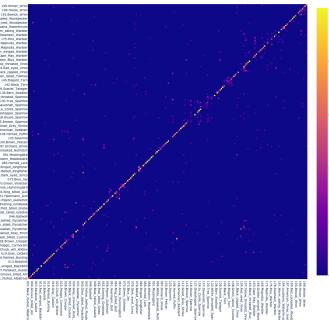
Models: Alice (NLG) and Bob (NLU)

Preliminary Results and Analysis

Classification results (not zero-shot)

	classifier loss	true rank	acc@1	acc@5	acc@10
without generation	4.786	5.7	0.58	0.84	0.91
with generation	4.756	6.4	0.61	0.83	0.89

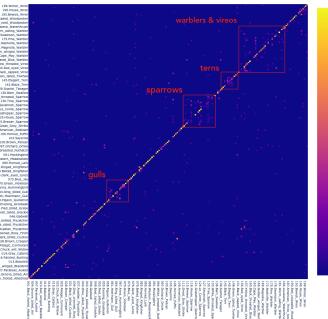
25 / 38



196.House Wren 193.Bewick_Wren 190.Red cockaded Woodpecke 187.American Three toed Woodpecker 184.Louisiana Waterthrush 181.Worm_eating_Warbler 178.Swainson_Warbler 175.Pine Warbler 172.Nashville_Warblet 169.Magnolla_Warbler 166.Golden_winged_Warbler 163.Cape May Warbler 160.Black_throated_Blue_Warbler 157.Yellow_throated_Vire 154.Red eved Vired 151.Black_capped_vired 148.Green_talled_Towhee 145.Elegant_Terr 142.Black_Terr 139.Scarlet Tanaper 136.Barn_Swallow 133.White throated Sparrow 130.Tree Sparrow 127.Savannah_Sparrow 124.Le_Conte_Sparrow 121.Grasshopper_Sparrow 118.House_Sparrow 115.Brewer_Sparrow 112.Great Grey Shrike 109.American Redstart 106.Horned_Puffin 103.Savornis 100.Brown_Pelica 097.Orchard_Oriole 094.White_breasted_Nuthatc 091.Mockingbil 088.Western Neadowlar 085.Horned Lark 082.Ringed_Kingfisher 079.Beited_Kingfisher 076.Dark_eyed_Junc 073.Blue_3a 070.Green_Violetear 067.Anna_Hummingbin 064.Ring_billed_Gul 051.Heermann_Gul 058.Pigeon_Guillemot 055.Evening_Grosbeak 052.Pied_billed_Grebe 049.Boat_talled_Grackie 046.Gadwal 043.Yellow_belled_Flycatcher 040.0live_sided_flycatcher 037.Acadian_Rycatcher 034.Gray_crowned_Rosy_Finch 031.Black_billed_Cuckoo 028.Brown_Creeper 025.Pelagic_Cormorant 022.Chuck_will_Widow 019.Gray_Catbird 016.Painted_Bunting 013.Bobolink 010.Red_winged_Blackbird 007.Parakeet_Auklet 004.Groove_billed_Ani 001.Black_footed_Albatros

> Centre for linguistic theory and studies in probability

26 / 38



196.House Wret 193.Bewick_Wret 190.Red cockaded Woodpeck 187 American Three toed Woodpeck 184.Louisiana_Waterthrush 181.Worm_eating_Warble 178.Swainson_Warble 175.Pine Warble 172.Nastville Warble 169.Magnolla_Warble 166.Golden winged Warble 163.Cape May Warble 160.Black_throated_Blue_Warbler 157.Yellow_throated_Viren 154.Red eved Vires 151.Black_capped_vires 148.Green tailed Towhe 145.Elegant_Terr 142.Black_Terr 139.Scarlet Tanape 136.Barn_Swallov 133.White throated Sparrow 130.Tree Sparrov 127.Savannah_Sparrow 124.Le_Conte_Sparro 121.Grasshopper_Sparro 118.House_Sparrov 115.Brewer_Sparro 112.Great Grey Shriki 109.American Redstar 106.Horned Puffit 103.Sayoma 100.Brown_Pelica 097.Orchard_Oriole 094.White_breasted_Nuthatch 091.Mockingbi 088.Western Neadowlar 085.Horned Larl 082.Ringed_Kingfishe 079.Beited_Kingfishe 076.Dark_eyed_Junc 073.Blue_Ja 070.Green_Violetea 067.Anna_Hummingbi 064.Ring_billed_Gul 051.Heermann Gul 058.Pigeon_Guillemo 055.Evening_Grosbea 052.Pied_billed_Grebe 049.Boat_tailed_Grackie 043.Yellow_bellied_Flycatche 040.0live_sided_flycatche 037.Acadian_Flycatche 034.Gray_crowned_Rosy_Plnct 031.Black_billed_Cuckor 028.Brown_Creepe 025.Pelagic_Cormoran 022.Chuck_will_Widov 019.Gray_Catbire 016.Painted Buntin 013.Bobolin 010.Red_winged_Blackbir 007.Parakeet_Auklet 004.Groove_billed_Ani 001.Black_footed_Albatr

> Centre for linguistic theory and studies in probability (≧) (≧) ≧ (○ Q (○ 26 / 38

Model Type	BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR	CIDEr
CLS vector + LSTM	76.12	60.87	46.74	35.04	29.78	20.06

- Decoding: greedy
- Inflated evaluation metrics due to the number of reference captions (Post, 2018).

Model Type	BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR	CIDEr
CLS vector + LSTM	46.12	28.54	18.24	12.07	19.47	19.98

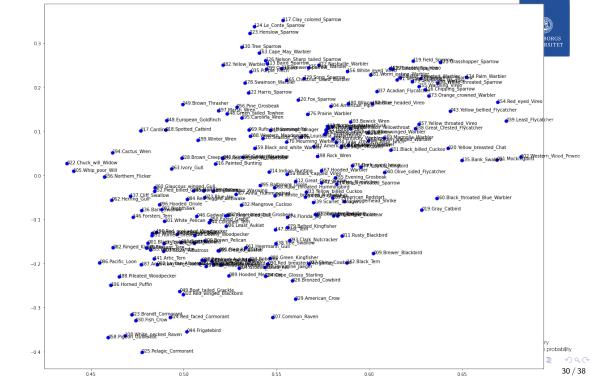
• The scores are *still* high enough even when a single reference caption is used to evaluate the generated texts.

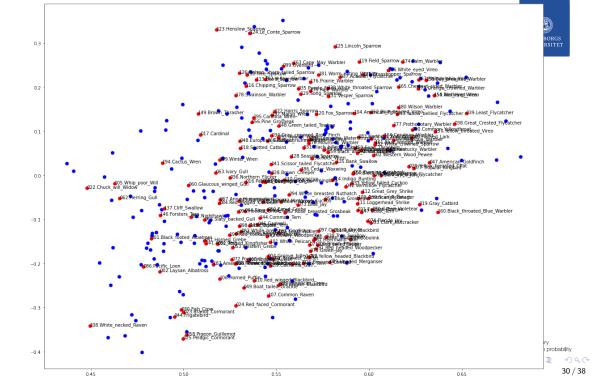
• Specifically, CIDEr score is affected the least.

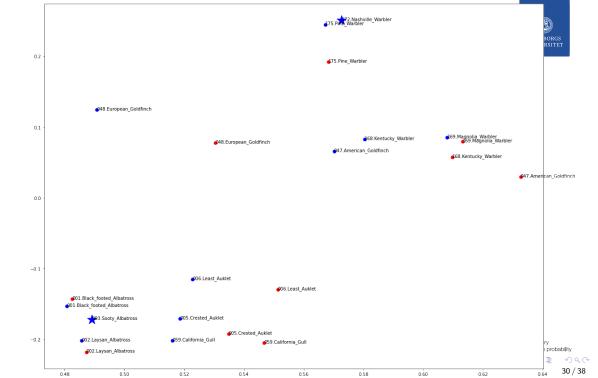
Generation: Examples

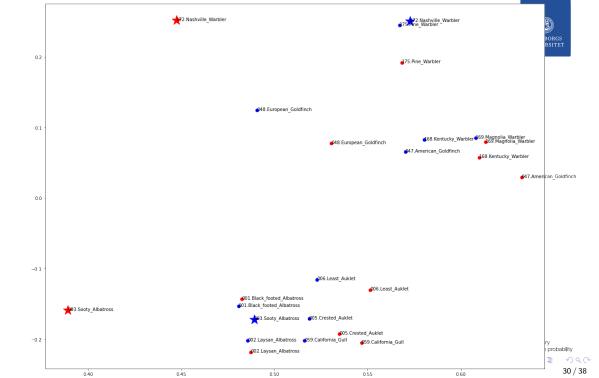
- **Reference**: this bird has large orange bill , a gray crown and nape , black and gray retrices and wings , and a white eye stripe .
- **Epoch 1**: this bird has <u>a black crown</u>, a white breast, and a black bill.
- **Epoch 4**: this bird has <u>a black crown</u>, a black bill, and a white breast.
- Epoch 10:: this bird has <u>a black crown</u>, **a** short orange bill, and a white eyering.
- Epoch 20: this bird has <u>a black crown</u>, a black breast, and **a short orange bill**

- Generated texts capture quite a lot of inter-class discriminative features in later stages of training; earlier stages of training capture more generic information (parts of birds and their attributes which appear very frequently between classes).
- We want to find a good trade-off between **discriminativeness** and **salience** of what is mentioned in texts.
- We propose to use interpretation task accuracy as means to evaluate the quality of generation (task-oriented) (will be examined in future work).









	classifier loss	true rank	acc@1	acc@5	acc@10
seen	4.721	4.2	0.63	0.87	0.93
random embedding	5.305	163.4	0.0	0.0	0.0
from ground truth desc.	5.305	88.2	0.0	0.0	0.0
from generated desc.	5.305	91.3	0.0	0.0	0.0

ULAOF and studies in probability

Introduction: Language Learning Grounded in Different Representations

▲□▶ ▲圖▶ ▲필▶ ▲필▶ 三里

Task: Learning to Interpret with Task-Oriented Descriptions

Background Grounded NLP Classifier-Based Perceptual Semantics Zero-shot Classification

Data: Image of Birds

Models: Alice (NLG) and Bob (NLU)

Preliminary Results and Analysis

Conclusion

- We demonstrate that categories learned through grounded language can be mapped to the same conceptual space as those learned by direct perception.
- We propose to use NLU model as a tool for automatic **"extrinsic"** evaluation of task-oriented generation (vs. intrinsic metrics such BLEU, etc.)
- Multi-task training including generation may be beneficial for learning perceptual classifiers.

Next Steps & Future Work

- Multiple seen/unseen folds
- LSTM with attention over class representation, Transformers for generation
- Adding more semantic information to the model, e.g. embedding of the class label (Liang et al., 2017; Ilinykh and Dobnik, 2020)
- Using networks that do not learn to ground, but to discriminate categories from each other (Cano Santín et al., 2020)
- Use other types of texts: captions vs class descriptions (the level of details and granularity of descriptions matter)

References I

- Raffaella Bernardi, Ruket Cakici, Desmond Elliott, Aykut Erdem, Erkut Erdem, Nazli Ikizler-Cinbis, Frank Keller, Adrian Muscat, and Barbara Plank. 2017. Automatic description generation from images: A survey of models, datasets, and evaluation measures (extended abstract). In *Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17*, pages 4970–4974.
- José Miguel Cano Santín, Simon Dobnik, and Mehdi Ghanimifard. 2020. Fast visual grounding in interaction: bringing few-shot learning with neural networks to an interactive robot. In *Proceedings of the Probability and Meaning Conference (PaM 2020)*, pages 53–61, Gothenburg. Association for Computational Linguistics.
- Harm De Vries, Florian Strub, Sarath Chandar, Olivier Pietquin, Hugo Larochelle, and Aaron Courville. 2017. GuessWhat?! Visual object discovery through multi-modal dialogue. In *Conference on Computer Vision and Pattern Recognition*, Honolulu, United States.
- Simon Dobnik and Vera Silfversparre. 2021. The red cup on the left: Reference, coreference and attention in visual dialogue. In *Proceedings of the 25th Workshop on the Semantics and Pragmatics of Dialogue Full Papers*, Potsdam, Germany. SEMDIAL.

References II

- Janosch Haber, Tim Baumgärtner, Ece Takmaz, Lieke Gelderloos, Elia Bruni, and Raquel Fernández. 2019. The PhotoBook dataset: Building common ground through visually-grounded dialogue. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1895–1910, Florence, Italy. Association for Computational Linguistics.
- Felix Hill, Olivier Tieleman, Tamara von Glehn, Nathaniel Wong, Hamza Merzic, and Stephen Clark. 2021. Grounded language learning fast and slow. In *International Conference on Learning Representations*.
- Nikolai Ilinykh and Simon Dobnik. 2020. When an image tells a story: The role of visual and semantic information for generating paragraph descriptions. In *Proceedings of the 13th International Conference on Natural Language Generation*, pages 338–348, Dublin, Ireland. Association for Computational Linguistics.
- Nikolai Ilinykh, Sina Zarrieß, and David Schlangen. 2019. Meet up! a corpus of joint activity dialogues in a visual environment. In *Proceedings of the 23rd Workshop on the Semantics and Pragmatics of Dialogue Full Papers*, London, United Kingdom. SEMDIAL.
- Emiel Krahmer and Kees van Deemter. 2012. Computational generation of referring expressions: A survey. *Computational Linguistics*, 38(1):173–218.

イロト イポト イヨト イヨト

References III

- Staffan Larsson. 2013. Formal semantics for perceptual classification. Journal of Logic and Computation, 25(2):335–369.
- Xiaodan Liang, Zhiting Hu, Hao Zhang, Chuang Gan, and Eric P. Xing. 2017. Recurrent topic-transition gan for visual paragraph generation. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*.
- Tzuf Paz-Argaman, Reut Tsarfaty, Gal Chechik, and Yuval Atzmon. 2020. ZEST: Zero-shot learning from text descriptions using textual similarity and visual summarization. In *Findings* of the Association for Computational Linguistics: EMNLP 2020, pages 569–579, Online. Association for Computational Linguistics.
- Matt Post. 2018. A call for clarity in reporting BLEU scores. In *Proceedings of the Third Conference on Machine Translation: Research Papers*, pages 186–191, Brussels, Belgium. Association for Computational Linguistics.
- Scott Reed, Zeynep Akata, Honglak Lee, and Bernt Schiele. 2016. Learning Deep Representations of Fine-Grained Visual Descriptions. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 49–58, Las Vegas, NV, USA. IEEE.

- David Schlangen, Sina Zarrieß, and Casey Kennington. 2016. Resolving references to objects in photographs using the words-as-classifiers model. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1213–1223, Berlin, Germany. Association for Computational Linguistics.
- C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. 2011. Caltech-ucsd birds 200. Technical Report CNS-TR-2011-001, California Institute of Technology.

