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Introduction: Language Learning Grounded in Different Representations



You have probably never seen a bird like this...
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You have probably never seen a bird like this...

e But what do we know about what
is in this image?
e Well, it is a bird.

e |t is very likely that we do not know
the type of the bird.

e This unknown bird would thus remind
us of some other birds that “look like

il

it .

e We can also say that this bird looks
“goofy"”.

e How would you describe this bird to
someone who has never seen one? It
depends on (i) who is describing it,
(ii) who are you describing it to.
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No image, only text description: what can you learn?

UNIVERSITET

A Crested Auklet has black wings, pointy orange bill,
a black thing on its head and looks goofy.

e Although image is not immediately available, from text alone you know which
visual clues to look for once you see the bird.

e You are also very likely to activate knowledge of the bird domain and make your
task easier by imagining how a Crested Auklet would look like.

e Grounded language learning is about grounding text in perception and
knowledge.
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Learning from Different Sources of Information

1. We can easily extract a lot of information about the world with our perception
e.g., when seeing an unknown bird.

2. However, our “representational ability” heavily relies on previous knowledge, both
visual and conceptual, because visual representations are not always immediately
available to us and we tend to utilise other sources of knowledge.

3. We might ground what we comprehend into what we store and keep in mind.
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Research Questions

Our research questions are as follows:

e To what extent can we employ both generation (NLG) and interpretation (NLU)
in a more natural grounded language learning scenario?

e How can we synthesize perceptual and conceptual representational knowledge?
e What makes descriptions effective at teaching novel categories?
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Outline

Task: Learning to Interpret with Task-Oriented Descriptions



Learning from Descriptions

Bob: Do you know what a Crested Auklet looks like? I've never seen one.
body and charcoal wing feathers.

UNIVERSITET

Bob: Hmm. Ok, I'll keep my eye out for one...

Alice: It's a goofy looking, large bird that has a bright orange break with a musky gray
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Background
Grounded NLP
Classifier-Based Perceptual Semantics
Zero-shot Classification



Grounded NLP |

Most work in grounding and NLP is (i) multi-modal (e.g., language-and-vision) and (ii)
focuses on situations where there is an immediately available one-to-one
correspondence between linguistic and perceptual input.

e Referring expression generation (Krahmer and van Deemter, 2012)

e Image captioning (Bernardi et al., 2017)

e Visually grounded dialogue games (De Vries et al., 2017; Haber et al., 2019;

llinykh et al., 2019; Dobnik and Silfversparre, 2021)

What has been missing is the opposite: when language is used to describe situations
that do not correspond to a shared visual scene.
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Classifier-Based Perceptual Semantics

e Intuition: Part of what it is to know the meaning of a (perceptual) word is to be
able to recognise instances of it in the world

e Two main approaches:
o functional approach — classifier is a function f : PerceptualData — [0, 1],

corresponding to e — t in classical type theoretic semantics (Larsson, 2013).
o distributed approach — parameters of a classifier (e.g., weight matrix) are regarded as

a representation of the word meaning (e.g., Schlangen et al., 2016).

e In this work, we take the distributed approach.
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Zero-shot Classification

e In zero-shot classification, we split the classes according to those known at train,
say Z time and those that are only shown at test time, say Z’.

e The knowledge gained by learning to differentiate between the classes in Z needs
to be transferred to the task of differentiating between the classes in ZU Z'.

e Paz-Argaman et al. (2020): text-based zero-shot classification of categories of
objects in images based on (i) visual similarities reflected in texts and (ii) visual
features which are reflected in text.

e Hill et al. (2021): zero-shot learning of novel objects in more interactive scenarios,
e.g. a robot that follows different commands and learns to interact with
surrounding objects.
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Data: Images (Wah et al., 2011)

CUB - Caltech-UCSB Birds 200
e 11K images of 200 different bird species, downloaded from Flickr

e bounding boxes and “attribute” values annotated by AMT workers (we don't use
these currently)
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Data: Descriptions (Reed et al., 2016)

GOTEBO
UNIVERS

Descriptions

e 10 descriptions of each bird image collected from AMT
e Instructions:

o describe only visual appearance in at least 10 words, to avoid figures of speech, to
avoid naming the species even if they knew it, and not to describe the background or
any actions being taken

o the prompt included three example sentences and a diagram labeling specific parts of
a bird
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Data: Examples

'n Ty

i

the bird has a yellow breast and black belly as
well as a small bill

this funny looking bird is black with white stripes
and has a large white spot on its head

the ugly grey bird has a chicken like head but
swims in the water .

this bird is squat with a medium - sized dark bill
, white head and breast , light brown abdomen ,
dark wings , and long tail that is twice the length
of the bird ' s body .
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Splits

e train/val/test split (instance-wise)
o 80%/10%10%
o 5-6 bird images per class in the val/test sets
e seen/un-seen split (category-wise)
o 180 seen, 10 unseen (by Bob) bird categories
o option for multiple folds
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Outline

Models: Alice (NLG) and Bob (NLU)



Generation model

this bird has a yellow belly and breast

with a gray crown and short pointy bill




Intepretation model

e Image encoder — VGG16 (pre-trained on Imagenet classification); convolutional
layers + first two linear layers
o (Classifier — Single fully-connected layer (with bias); softmax activation

o DESCRPHGRISEREAtor — LSTM decoder
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Interpretation model

this bird has a yellow belly and breast

with a gray crown and short pointy bill.
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Intepretation model

e Image encoder — VGG16 (pre-trained on Imagenet classification): convolutional
layers + first two linear layers
o Classifier — Single fully-connected layer (no bias); softmax activation

o DESGriptionMiterpreter - BERT [CLS] token pooler output; single linear layer with

tanh activation (mean squared error loss function)
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Classification results (not zero-shot)

classifier loss true rank acc@l acc@5 acc@l10
without generation 4.786 5.7 0.58 0.84 0.91
with generation 4.756 6.4 0.61 0.83 0.89
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Automatic Evaluation of Generation

Model Type BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | METEOR | CIDEr
CLS vector + LSTM 76.12 60.87 46.74 35.04 290.78 20.06
e Decoding: greedy

e Inflated evaluation metrics due to the number of reference captions (Post, 2018).

Model Type BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | METEOR | CIDEr
CLS vector + LSTM 46.12 28.54 18.24 12.07 19.47 19.98

e The scores are still high enough even when a single reference caption is used to
evaluate the generated texts.

e Specifically, CIDEr score is affected the least.

centre for
linguistic theol
and studies in probability

27/38



Generation: Examples

e Reference: this bird has large orange bill ,
a gray crown and nape , black and gray
retrices and wings , and a white eye stripe .

e Epoch 1: this bird has a black crown , a
white-breast , and a black bill .

e Epoch 4: this bird has a black crown , a
black bill , and a-white-breast .

e Epoch 10:: this bird has a black crown , a
short orange bill , and a white eyering .

e Epoch 20: this bird has a black crown , a
black breast , and a short orange bill
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Generation: Analysis

e Generated texts capture quite a lot of inter-class discriminative features in later
stages of training; earlier stages of training capture more generic information
(parts of birds and their attributes which appear very frequently between classes).

e We want to find a good trade-off between discriminativeness and salience of
what is mentioned in texts.

e We propose to use interpretation task accuracy as means to evaluate the quality
of generation (task-oriented) (will be examined in future work).
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Interpretation: Results

classifier loss true rank acc@l acc@®5 acc@10
seen 4721 4.2 0.63 0.87 0.93
random embedding 5.305 163.4 0.0 0.0 0.0
from ground truth desc. 5.305 88.2 0.0 0.0 0.0
from generated desc. 5.305 91.3 0.0 0.0 0.0
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Conclusion, Next Steps and Future Work



Conclusion

e We demonstrate that categories learned through grounded language can be
mapped to the same conceptual space as those learned by direct perception.

e We propose to use NLU model as a tool for automatic “extrinsic” evaluation of
task-oriented generation (vs. intrinsic metrics such BLEU, etc.)

e Multi-task training including generation may be beneficial for learning perceptual
classifiers.
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Next Steps & Future Work

e Multiple seen/unseen folds

e LSTM with attention over class representation, Transformers for generation

e Adding more semantic information to the model, e.g. embedding of the class label
(Liang et al., 2017; llinykh and Dobnik, 2020)

e Using networks that do not learn to ground, but to discriminate categories from
each other (Cano Santin et al., 2020)

e Use other types of texts: captions vs class descriptions (the level of details and
granularity of descriptions matter)

centre for
linguistic theory
and studies in probability

34/38



References |

UNIVERSITET

Raffaella Bernardi, Ruket Cakici, Desmond Elliott, Aykut Erdem, Erkut Erdem, Nazli
Ikizler-Cinbis, Frank Keller, Adrian Muscat, and Barbara Plank. 2017. Automatic description
generation from images: A survey of models, datasets, and evaluation measures (extended

abstract). In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI-17, pages 4970-4974.

José Miguel Cano Santin, Simon Dobnik, and Mehdi Ghanimifard. 2020. Fast visual grounding
in interaction: bringing few-shot learning with neural networks to an interactive robot. In
Proceedings of the Probability and Meaning Conference (PaM 2020), pages 53-61,
Gothenburg. Association for Computational Linguistics.

Harm De Vries, Florian Strub, Sarath Chandar, Olivier Pietquin, Hugo Larochelle, and Aaron
Courville. 2017. GuessWhat?! Visual object discovery through multi-modal dialogue. In
Conference on Computer Vision and Pattern Recognition, Honolulu, United States.

Simon Dobnik and Vera Silfversparre. 2021. The red cup on the left: Reference, coreference
and attention in visual dialogue. In Proceedings of the 25th Workshop on the Semantics and
Pragmatics of Dialogue - Full Papers, Potsdam, Germany. SEMDIAL.

centre for
linguistic theory
and studies in probability

35/38


https://doi.org/10.24963/ijcai.2017/704
https://doi.org/10.24963/ijcai.2017/704
https://doi.org/10.24963/ijcai.2017/704
https://aclanthology.org/2020.pam-1.7
https://aclanthology.org/2020.pam-1.7
https://hal.inria.fr/hal-01549641
http://semdial.org/anthology/Z21-Dobnik_semdial_0008.pdf
http://semdial.org/anthology/Z21-Dobnik_semdial_0008.pdf

References |l

Janosch Haber, Tim Baumgartner, Ece Takmaz, Lieke Gelderloos, Elia Bruni, and Raque
Fernandez. 2019. The PhotoBook dataset: Building common ground through
visually-grounded dialogue. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 1895-1910, Florence, Italy. Association for
Computational Linguistics.

Felix Hill, Olivier Tieleman, Tamara von Glehn, Nathaniel Wong, Hamza Merzic, and Stephen
Clark. 2021. Grounded language learning fast and slow. In International Conference on
Learning Representations.

Nikolai Ilinykh and Simon Dobnik. 2020. When an image tells a story: The role of visual and
semantic information for generating paragraph descriptions. In Proceedings of the 13th
International Conference on Natural Language Generation, pages 338-348, Dublin, Ireland.
Association for Computational Linguistics.

Nikolai llinykh, Sina ZarrieB, and David Schlangen. 2019. Meet up! a corpus of joint activity
dialogues in a visual environment. In Proceedings of the 23rd Workshop on the Semantics
and Pragmatics of Dialogue - Full Papers, London, United Kingdom. SEMDIAL.

Emiel Krahmer and Kees van Deemter. 2012. Computational generation of referring
expressions: A survey. Computational Linguistics, 38(1):173-218. contro for

linguistic theory
and studies in probability

36/38


https://doi.org/10.18653/v1/P19-1184
https://doi.org/10.18653/v1/P19-1184
https://openreview.net/forum?id=wpSWuz_hyqA
https://aclanthology.org/2020.inlg-1.40
https://aclanthology.org/2020.inlg-1.40
http://semdial.org/anthology/Z19-Ilinykh_semdial_0006.pdf
http://semdial.org/anthology/Z19-Ilinykh_semdial_0006.pdf
https://doi.org/10.1162/COLI_a_00088
https://doi.org/10.1162/COLI_a_00088

References |1l

UNIVERSITET

Staffan Larsson. 2013. Formal semantics for perceptual classification. Journal of Logic and
Computation, 25(2):335-369.

Xiaodan Liang, Zhiting Hu, Hao Zhang, Chuang Gan, and Eric P. Xing. 2017. Recurrent
topic-transition gan for visual paragraph generation. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV).

Tzuf Paz-Argaman, Reut Tsarfaty, Gal Chechik, and Yuval Atzmon. 2020. ZEST: Zero-shot
learning from text descriptions using textual similarity and visual summarization. In Findings
of the Association for Computational Linguistics: EMNLP 2020, pages 569-579, Online.
Association for Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU scores. In Proceedings of the Third
Conference on Machine Translation: Research Papers, pages 186—191, Brussels, Belgium.
Association for Computational Linguistics.

Scott Reed, Zeynep Akata, Honglak Lee, and Bernt Schiele. 2016. Learning Deep
Representations of Fine-Grained Visual Descriptions. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 49-58, Las Vegas, NV, USA. IEEE.

centre for
linguistic theory
and studies in probability

37/38


https://doi.org/10.1093/logcom/ext059
https://doi.org/10.18653/v1/2020.findings-emnlp.50
https://doi.org/10.18653/v1/2020.findings-emnlp.50
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.1109/CVPR.2016.13
https://doi.org/10.1109/CVPR.2016.13

References IV

UNIVERSITET

David Schlangen, Sina ZarrieB, and Casey Kennington. 2016. Resolving references to objects in
photographs using the words-as-classifiers model. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1213-1223, Berlin, Germany. Association for Computational Linguistics.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. 2011. Caltech-ucsd birds 200.
Technical Report CNS-TR-2011-001, California Institute of Technology.

centre for
linguistic theory
and studies in probability

38/38


https://doi.org/10.18653/v1/P16-1115
https://doi.org/10.18653/v1/P16-1115

	Introduction: Language Learning Grounded in Different Representations
	Task: Learning to Interpret with Task-Oriented Descriptions
	Background
	Grounded NLP
	Classifier-Based Perceptual Semantics
	Zero-shot Classification

	Data: Image of Birds
	Models: Alice (NLG) and Bob (NLU)
	Preliminary Results and Analysis
	Conclusion, Next Steps and Future Work
	References

